Independent sets of maximum weight in (p,q)-colorable graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Sets of Maximum Weight in Apple-Free Graphs

We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by...

متن کامل

on the number of maximum independent sets of graphs

let $g$ be a simple graph. an independent set is a set ofpairwise non-adjacent vertices. the number of vertices in a maximum independent set of $g$ isdenoted by $alpha(g)$. in this paper, we characterize graphs $g$ with $n$ vertices and with maximumnumber of maximum independent sets provided that $alpha(g)leq 2$ or $alpha(g)geq n-3$.

متن کامل

Approximating maximum weight K-colorable subgraphs in chordal graphs

We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O(K(n+m)), where n and m are the number of vertices and edges in the given graph.

متن کامل

Towards Maximum Independent Sets on Massive Graphs

Maximum independent set (MIS) is a fundamental problem in graph theory and it has important applications in many areas such as social network analysis, graphical information systems and coding theory. The problem is NP-hard, and there has been numerous studies on its approximate solutions. While successful to a certain degree, the existing methods require memory space at least linear in the siz...

متن کامل

INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2003

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(02)00877-4